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Abstract
Symmetry arguments are used to develop a spin Hamiltonian for the description of the complex
magnetic ordering in HoMnO3. Using a novel application of the Landau–Lifshitz–Gilbert
dynamic torque equations to this model of the frustrated Mn ions on an AB stacked triangular
antiferromagnetic, it is shown that the four principal spin configurations observed in this
compound are stabilized. Ho–Mn coupling is found to be a consequence of an unusual trigonal
anisotropy term which is responsible for simultaneous Mn spin reorientation and the onset of
Ho magnetic order. On the basis of these microscopic considerations, a mean-field Landau-type
free energy is derived which reproduces the succession of observed temperature-driven
magnetic phase transitions at zero field, including re-entrant behavior. In addition, our analysis
suggests that the basal-plane magnetic order should be slightly incommensurate with the lattice.

Hexagonal HoMnO3 is one of the most studied of the
rare-earth manganites and has a magnetic field–temperature
phase diagram that exhibits a multitude of complex spin
structures [1–6]. Key features of the magnetic phases in
this stacked triangular antiferromagnet include a series of
reorientation transitions (with re-entrant behavior) at about 5
and 40 K involving AB-stacked triangular layers of Mn spins
which form the familiar basal-plane 120◦ spin structure below
the Néel temperature TN = 76 K. Low temperature c-axis spin
alignment of AA-stacked Ho ions is also observed which is
concomitant with Mn spin reorientation. The nature of the
coupling between Mn and Ho ordering has remained puzzling
for close to two decades.

In this communication, a formulation of the spin
Hamiltonian appropriate for a description of the magnetic
phases of HoMnO3 is developed on the basis of symmetry
arguments. The principal Mn spin configurations observed
in the magnetic phase diagram are found to depend on the
signs of the coefficients of in-plane sixth-order anisotropy and
inter-plane exchange coupling. These states are determined
through a numerical solution of the dynamic Landau–Lifshitz–
Gilbert (LLG) equation which includes finite temperature
effects. Theoretical arguments proposed over twenty years ago

that even weak interlayer coupling of AB stacked triangular
antiferromagnetic layers leads to an incommensurate distortion
of the usual 120◦ period-3 spin structure [7] are confirmed
by these simulations. The crucial role of Ho-ion ordering in
driving the transitions between the various Mn-ion ordered
states is also explicitly demonstrated [8]. Since strong planar
anisotropy in the case of Mn spins (S ⊥ c) and axial anisotropy
in the case of Ho spins (S0 ‖ c ‖ ẑ) leads to S · S0 = 0,
the usual exchange coupling mechanism should be absent in
equilibrium (but can contribute to magnetic excitations [9]).
However, the hexagonal crystal symmetry of this compound
contains a six-fold screw axis which allows for a fourth-order
trigonal anisotropy term of the form [10]

HK̃ = K̃
∑

〈i j〉
Sz

0i Sy
j [3(Sx

j )
2 − (Sy

j )
2] (1)

where the sum is over near neighbors. Such a term can
occur provided that either Ho or Mn spin configurations are
antiferromagnetic between AB layers, but not both. The
consequences of this interaction are examined within the
framework of a simple Landau-type free energy derived
within a mean-field approximation. This demonstrates that
the trigonal coupling term causes the series of Mn spin
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reorientation transitions observed in zero applied magnetic
field. We note that a phenomenological Landau-type free
energy based on group theoretic arguments was previously
developed to explore the magnetic phase diagrams of
hexagonal RMnO3 compounds, which is complementary to the
present work [12].

Our investigation may be compared with other proposals
regarding microscopic mechanisms of coupling between rare-
earth and Mn ions in the hexagonal manganites. A recent
discussion of Mn–Yb coupling in the sister compound
YbMnO3 (which does not exhibit zero-field Mn reorientation
transitions) suggests that it could be due to dipolar or
Dzyaloshinskii–Moriya (DM) interactions [13]. Dipolar
effects were estimated to be an order of magnitude too small
and either effect would require that the rare-earth ions order
at the same temperature as the Mn ions (since both types of
interactions involve a linear coupling between the two types of
spins), which is not the case in HoMnO3.

An intriguing alternative explanation has been put forth
which suggests that the slight distortion of the perfect
triangular symmetry can give rise to asymmetric interlayer
exchange interactions [12, 14]. A change in sign of this
exchange coupling occurs in response to the temperature-
driven lattice distortion which in turn drives the Mn spin
reorientations. The significance of such distortion-driven
interlayer coupling may be considered secondary in view of
the observation made here that ordinary interlayer exchange
should indeed be present (since the in-plane Mn modulation
should not be exactly period-3). In addition, it is well
established that there are simultaneous changes in the Ho
magnetic order at the Mn spin reorientation transitions which
must be accounted for in a complete microscopic model. We
do show below, however, that the distortion of the perfect
triangular lattice resulting in anisotropic in-plane exchange
interactions serves to enhance the incommensurability of the
Mn spin modulation (in addition to the ordinary exchange
coupling between AB stacked layers mentioned above) [15].

Terms which appear in the spin Hamiltonian (or Landau-
type free energy) of a magnetic system can be constructed with
the requirement of invariance with respect to the generators of
the crystal space group in the paramagnetic regime. In the
case of hexagonal RMnO3 compounds, the crystal symmetry
group is non-symorphic P63cm with generators given by a
screw rotation {C+

6 |00 1
2 } and glide plane {σv|00 1

2 } [11]. Terms
involving lattice vectors (such as dipole contributions) are
omitted here for simplicity. In the present case, allowed
anisotropic terms at second order are the axial/planar type,
(Sz)2, as well as the DM interaction. The lowest-order term
which gives rise to a dependence of the orientation of planar
spins relative to the crystal axes occurs at sixth order.

In the remainder of this communication results are
presented on LLG simulations involving only Mn spins and
an analysis of a mean-field Landau-type free energy with Ho–
Mn trigonal coupling. We conclude with a discussion of
incommensurability arising from distortions of perfect triangle.

With the goal exploring a simplified spin Hamiltonian
involving only the Mn ions we consider the following

contributions

HMn =
∑

〈i j〉
Ji j Si · S j − D

∑

j

(Sz
j )

2

+ E
∑

j

[(Sx
j + iSy

j )
6 + (Sx

j − iSy
j )

6]. (2)

The first term includes only isotropic in-plane near-neighbor
exchange interaction of the perfect triangular lattice, J ≡ 1
as well as near-neighbor exchange between A and B triangular
layers, J ′. Interlayer exchange is assumed here to be weak (as
in YMnO3 [16]). As noted previously [7], this contribution is
zero in the case of the 120◦ spin structure since the coupling
between a spin on layer A and its three neighbors on layer B
appears as J ′SA · (SB

1 + SB
2 + SB

3 ). Strong planar anisotropy is
assumed to arise from a large single-ion term with D < 0. The
sign of the in-plane anisotropy coefficient E determines the
orientation of S relative to the crystal a-axis in a temperature
regime below TN.

This model Hamiltonian was used to demonstrate the
four principal Mn spin configurations identified in RMnO3

compounds. These are conveniently illustrated in figure 7
of [13] and are labeled �1→4 and can be characterized by two
features: (1) inter-plane ferromagnetic or antiferromagnetic
spin configurations, and (2) intra-plane spin orientations being
parallel or perpendicular to a basal-plane a-axis. Spin
configurations were determined numerically as a solution to
the dynamic LLG equations, which may be expressed as the
familiar torque equation, involving the gyromagnetic ratio γ ,
plus a damping term involving the parameter α, as

dS
dt

= − γ

1 + γ
S × Heff − αγ

1 + α2
S × (S × Heff). (3)

The LLG equations have proven very useful in the
determination of subtle differences in equilibrium magnetic
structures which involve long-range magnetostatic effects in
thin films but have occasionally also been applied to spin
systems with only short-range exchange interactions [17, 18].
They are well suited for the study of highly frustrated magnetic
systems and may be viewed as an alternative to Monte Carlo
simulations. The effective field is given by Heff = −δH/δS +
Hth where Hth is the stochastic field describing thermal
fluctuations within the framework of Langevin dynamics. Spin
vectors were located on interpenetrating 12 × 12 × 12 AB
stacked triangular lattices. An Euler numerical integration
scheme with adaptive time steps was employed using γ ≡ 1,
α = 0.1 where equilibrium spin structures are determined by
averaging the long-time behavior of Si (t).

The Néel order parameter can be calculated as the root
mean square of the three sublattice magnetizations as in [18].
For simplicity, a large single-ion anisotropy D = −1.0 was
assigned (although larger than the experimentally determined
value [3], this difference is not relevant to the present
calculation which simply demonstrates the four zero-field Mn
spin states) and small interlayer exchange |J ′| = 0.01 and
small in-plane anisotropy |E | = 0.01, we find TN 
 0.43.

The four principal Mn spin phases result from these
simulations by changing the signs of J ′ and E . An example
spin configuration determined at T = 0.40 is shown in figure 1
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Figure 1. LLG simulation results using J = 1.0, J ′ = 0.01,
D = −1.0, E = 0.01, T = 0.4. This corresponds to the case of
phase �1. An outline of the unit cell is shown.

(This figure is in colour only in the electronic version)

which correspond to the �1 phase (SA = −SB, S ⊥ a). Note
that the effect of thermal fluctuations is to induce deviations
from the idealized structure. The other three principal phases
were also observed in the numerical results, dependent on the
signs of J ′ and E , as follows: �2 with J ′ > 0, E < 0; �3 with
J ′ < 0, E < 0; �4 with J ′ < 0, E > 0.

We note that the near-neighbor exchange interaction
between Mn spins in HoMnO3 has been estimated to be J =
2.44 meV 
 28 K from spin-wave dispersion curves [3]. Using
s = 2 associated with Mn3+, we find TN 
 0.43 J s2 
 112 K,
considerably larger than the observed 76 K. The reasons for
this discrepancy are not clear but may be due to the assumed
value of J ′.

The crucial role of the Ho-ion spins in driving Mn spin
reorientation transitions is made clear by considering a simple
Landau-type free energy, derived from mean-field theory,
which accounts for the microscopic interactions identified
above. This approach has the advantage of revealing explicitly
the competition between the different microscopic energy and
entropy (S) contributions through the relation F = E − TS,
where thermal effects are calculated in a manner similar to the
Brillouin function [19, 20]. Single-ion anisotropy associated
with the Ho ions is assumed to be positive (D0 > 0) giving
S0 ‖ c ‖ ẑ. Keeping only relevant terms to sixth order yields
(in units of the Boltzmann constant):

F/kB = AS2 + A0S2
0 + 1

2 BS4 + 1
2 B0S4

0 + 1
3 C S6

+ 1
3 C0S6

0 + K̃ S0S3 cos(3φ) + E S6 cos(6φ), (4)

where A = a(T − TN) and A0 = a0(T − TN0), B = bT ,
B0 = b0T , C = cT , C0 = c0T . Here, the Mn3+ spins
order at the Néel temperature TN = −J (Q)s2/a. For the
Ho3+ ions, the corresponding parameter is TN0 = (−J0(Q0) +
D0) j 2/a0 which involves the total angular moment [1] j = 8.
Expressions for the entropy constants are given in [20] and
yield a = 2, b = 0.867, c = 0.610, a0 = 2.667, b0 = 1.43,
and c0 = 1.21. The remaining model parameters involving
the exchange and anisotropy are estimated to reproduce the
approximate sequence of phase transitions observed at zero
field. We note that this approach is expected to be increasing
less quantitative as the temperature is lowered where the
Landau assumption of a small order parameter S breaks down.

Figure 2. Results of numerical minimization of the mean-field free
energy (4).

For spin structures with a periodicity of three relative to
near-neighbor spacing on a triangular lattice, J (Q) = −3J1

(also see below). For this analysis, we set TN = 76 K which
yields the mean-field estimate J1 = 1.15 meV, more than a
factor of two smaller than the measured value. This difference
is consistent with the expected role of spin fluctuations in
quasi-2D frustrated antiferromagnets (a suppression of TN).
An estimate of TN0 can be made using the measured Curie–
Weiss behavior [1], which yields the estimate TC = −17 K.
This value may be compared with the above expression for TN0

using Q = 0 and J0(0) = 6J01 where J10 is the near-neighbor
exchange interaction between Ho ions in the triangular plane.
For simplicity, we ignore the anisotropy D0 so that the estimate
J10 
 0.1 K can be made. This result is consistent with
very weak Ho–Ho spin coupling. Assuming a period-3 near-
neighbor modulation of the Ho moments then gives TN0 
 8 K,
associated with a pure Ho system.

In the free energy (4), φ represents the angle between Mn
spins and the triangular lattice defined by the Ho ions. The
trigonal K̃ -term is minimized by φ = nπ/3, independent
of the sign of K̃ , whereas the basal-plane anisotropy E-term
favors φ = nπ/3 for E < 0 and (2n + 1)π/6 for E > 0.

Numerical minimization of F(S, S0, φ) reveals a variety
of phase transition sequences as the temperature is lowered
below the paramagnetic phase (S = S0 = 0), dependent on
the assumed values for E and K̃ . Variations occur mainly
through the sign of E and the magnitude of K̃ . For example,
the using K̃ = 25 K and E = 1 K (for comparison note
that bTN 
 66 K) yields the results shown in figure 2. The
first ordered state is characterized by S �= 0, S0 = 0 and
φ = (2n + 1)π/6, corresponding to �4 or �1. In the narrow
range around T 
 37 K, we find that φ decreases rapidly to
zero (φ = nπ/3) with the concomitant development of Ho spin
order. Analysis of the free energy reveals that the Ho ordering
occurs at THo = TN0 + K̃ 2/(8Ea0). The narrow region around
37 K (where 0◦ < φ < 30◦) corresponds to phase �5 or �6. In
the range T 
 37 K to T 
 12 K, the order corresponds to �2

or �3. Finally, below T 
 12 K, φ becomes non-zero again,
corresponding to re-entrance to �5 or �6.

The trigonal term is allowed by symmetry only if the
magnetic order alternates in sign along the c-axis for either
Mn or Ho spins (but not both) and is ferromagnetic for
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the other species. A conclusion of [8] is that Ho order is
antiferromagnetic between triangular planes so that for phases
where S0 �= 0 in the present analysis, the Mn order must be
ferromagnetic along the c-axis. This suggests that the main
sequence of phases in HoMnO3 as the temperature increases is
given by �6 → �3 → �4, with a narrow region of stability of
the intermediate phase �6 between �3 and �4. This complex
sequence of transitions, involving re-entrance of the state �6,
is consistent with experimental results (see, e.g., [4]).

Other choices of parameter values yields different phase
transition scenarios. For example, a smaller value of K̃ = 10 K
stabilizes the sequence �6 → �4, with increasing temperature.
With E < 0, φ = nπ/3 is stabilized (�2 or �3), which yields
simultaneous Mn and R ordering at TN. These scenarios have
been reported to occur in ErMnO3, YbMnO3 and TmMnO3.

The principal impact of a magnetic field applied along the
c axis is the suppression of the �3 phase (φ = nπ/3). A
simple analysis illustrates how this can arise within the Landau
free energy model. An applied field will induce a uniform
contribution to the spin density giving

s(r) = m + [SeiQ·r + S0
∗e−iQ0·r + c.c.] (5)

and the free energy functional F[s(r)] (with a Zeeman term
added) expanded in powers of s will contain numerous
additional terms involving the magnetization m = χ Hz [11].
Some of the additional terms serve to effectively introduce
a field dependence to the coefficients which appear in the
free energy (4). For example, both anisotropy terms are
renormalized as K̃ → KH = K̃ + K̃0m2 and E → EH =
E + E0m2 where K̃0 and E0 are new parameters. The stability
of the phase �3 from the numerical minimization of the free
energy (4) is found to be very sensitive to the values of both
KH and EH. For example, with the nominal zero-field value
EH = 1.0, this phase is stable in the region 12 K � T � 37 K.
A field induced increase to a value EH = 1.1 would shrink this
to a temperature interval 16 K � T � 34 K and at EH = 1.3
the �3 phase is suppressed entirely in favor of the �4 phase.
Similar sensitivity is found with variations in KH. We note
that a term of the form mS3 cos(3φ) can also occur but only if
the Mn spins order antiferromagnetically between planes. This
term thus enhances the stability of the �1 phase. These results
are consistent with experimental magnetic phase diagrams of
HoMnO3 where above a relatively small applied field of 3–4 T
the �4 spin structure occupies most of the phase diagram and
the �3 state is absent. In addition, the �1 phase is observed
at low temperatures but only at fields above 1.5 T. At lower
temperatures, where the Landau model assumptions are less
reliable, we find that the intermediate phase �6 is stabilized. A
wide variety of scenarios have been proposed on the nature of
the spin ordering in this region of the phase diagram based on
experimental work.

The above analysis was made with the assumption that
the spin orderings are commensurate with the lattice. Due to
both small inter-plane coupling of Mn spins as well as the
small distortion of the triangular lattice, we argue that the
magnetic ordering should in fact be slightly incommensurate.
We confirmed in the numerical solutions to the LLG equations
the expected incommensurability of the in-plane modulation

Figure 3. Results of numerical minimization of J (Q) (4) showing
the impact of the angle between near-neighbor Mn spins due to the
lattice distortion x (with J2/J1 = 1) and also due to J2/J1 �= 1 (at
the value x = 0.322).

driven by interlayer coupling J ′ of AB stacked triangular
layers [7]. This was observed as a deviation from 120◦
in the average Mn inter-spin angle as a function of small
J ′. The effect of the distortion of the triangular lattice
(characterized by the deviation of the parameter x from 1/3)
is seen by considering the wavevector which minimizes the
Fourier transform of the in-plane Mn exchange interactions,
J (Q). Referring to [1], vectors connecting site 0 to its nearest
neighbors are given by r10 = ( 3

2 x, x), r20 = ( 3
2 x,−x),

r30 = ( 3
2 x − 1

2 , x −1), r40 = ( 3
2 x −1,−x), r50 = ( 3

2 x −1, x),
r60 = ( 3

2 x − 1
2 , 1 − x) relative to crystallographic vectors

(ax̂, bŷ) where b = √
3/2. In this description, the simple

hexagonal lattice is defined by the Ho-ion sites. There are
two Mn–Mn bond lengths, (

√
3x2)a and (

√
3x2 − 3x + 1)a,

corresponding to exchange interactions [16], J1 > J2, giving

J (q) = 2J1 cos( 3
2 xqx) cos(qyx) + 2J2[cos( 3

2 xqx − 1
2 qx)

× cos(qyx − qy) + cos( 3
2 xqx − qx) cos(qyx)] (6)

where (qx, qy) = (a Qx , bQy). With J2 = J1 and x = 1
3 , this

function is minimized by near-neighbor spins having a relative
angle of 120◦. Deviations from this value as a function of either
x (with J2 = J1) or J2/J1 (with x = 0.322, the observed value
in HoMnO3 [1]) are shown in figure 3.

In addition to demonstrating that the four principal Mn
spin states in HoMnO3 are a consequence of a simple spin
Hamiltonian, our mean-field analysis has also shown that an
unusual trigonal anisotropy term leads to Mn–Ho coupling
which accounts for the observed complex phase transition
sequence at zero field. This investigation has revealed
explicitly the relation between Ho spin order and Mn spin
reorientation. Extensions of the LLG approach, which is
not limited by the same assumptions as Landau theory, to
include this coupling and an applied magnetic field to examine
phase diagrams and spin excitations are planned. Our work
has also provided strong theoretical arguments which support
a scenario where the in-plane modulation characterizing Mn
spin order in many RMnO3 compounds should exhibit a
slight incommensurability away from the normally assumed
period-3 modulation. This deviation from a perfect 120◦ spin
structure has not yet been reported, likely a consequence of
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the smallness of the incommensurability, but deserves a more
detailed investigation.

We thank J Mercer, G Quirion and S Curnoe for enlightening
discussions. This work was supported by NSERC of Canada
and the Atlantic Computational Excellence Network (ACEnet).
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